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Abstract 

In response to the ever-growing demand for real-time intraoperative intelligence in modern operating rooms, 

surgical instrument detection and tracking as a part of computer vision techniques for surgical instruments 

has made significant progress. These methods are applied as tool usage analysis and skill evaluation, 

autonomous assistance, and surgical workflow optimization. Deep learning architectures like CNNs, 

transformers, as well as HA, although they have recently emerged for SPTIC, still face challenges associated 

with occlusion, visual ambiguity, domain variability, or real-time performance. The state-of-the-art 

approaches, their experimental performance are reviewed, and gaps preventing clinical deployment are 

identified. The emphasis is made in terms of the evaluation metrics, the algorithmic advancements, and the 

system integration. The last section concludes with discussions of unresolved issues and possible directions to 

further develop the clinical utility of these technologies. 

Keywords: Computer Vision; Deep Learning; Operating Room Automation; Surgical Instrument Detection; 

Tracking. 

 

1. Introduction  

Recently, the operating room (OR) has undergone an 

extraordinary transformation due to the incorporation 

of sophisticated technologies in the field of surgical 

automation and augmented intelligence. In the realm 

of these advancements, one of the most important 

areas turning out to be the application of computer 

vision (CV) based techniques to detect and track 

surgical instruments in surgical procedures. With 

surgical interventions relying more and more on 

image-guided systems and robotic assistance, real-

time monitoring of surgical tools is increasingly 

important in order to increase precision, safety, and 

efficiency of a procedure [1]. The ability to develop 

such systems increases the development of intelligent 

operating rooms in which digital information is 

seamlessly integrated into the surgical workflows and 

used together to assist intraoperative decision 

making. This is a complex, yet critical, task of 

detecting and tracking surgical instruments in video 

streams or sensor data of an operation. A foundation 

of capabilities is provided for a large variety of 

downstream applications such as surgical phase 

recognition, workflow analysis, and automated report 

generation [2]. In addition, accurate tracking is 

essential to score and train in simulation-based 

environments [3]. Due to their importance in assisting 

surgeons during MIS, these capabilities are 

increasingly important in MIS [4], where surgeons 

are operating with a limited field of view and visual 

feedback solely depends on endoscopic cameras. 

However, this is an important topic as increasing 

numbers of data-driven surgeries are moving towards 

sifting through vast repositories of surgical videos 

and procedural data in order to create computational 

models. For the purpose of generating actionable 

insights and predictive models, robust and real-time 

identification of instruments is a cornerstone in this 

context [5]. Additionally, global efforts towards 

better surgical outcomes, minimizing intraoperative 

errors, and developing autonomous surgical systems 

that will perform repetitive or supportive tasks have 

further accelerated the demand for such technologies 

[6]. While great progress has been made in computer 

vision methodologies, surgical instrument detection 

and tracking continue to be a highly technical and 

practical problem. Visual occlusion, instrument 

similarity in appearance, dynamic lighting 

conditions, surgical smoke, and the complexity of 
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soft tissue deformation present significant hurdles to 

reliable performance [7]. Additionally, the limited 

generalizability of many proposed solutions is due to 

the lack of a large-scale annotated dataset and the 

variability in surgical scenes in different procedures 

and institutions [8]. Additionally, a lot of the current 

algorithms fail to strike a balance between producing 

inferences in real time and being very accurate, which 

is extremely important in situations where time is 

critical, as with surgical environments [9]. However, 

another critical limitation is that the deep learning-

based models used in instrument tracking are not 

interpretable and robust. Although CNNs and 

transformer architectures have demonstrated 

promising performance, healthcare entities remain 

reluctant to deploy them in clinical settings due to the 

unexplainable predictions produced by these black-

box models [10]. These gaps emphasize the need for 

more transparent, and to some extent generalizable, 

yet adaptable solutions to be integrated into current 

surgical infrastructures with minimum disruption to 

the workflow or surgical team’s retraining for 

different use cases. This review aims to give an 

overview of all modern algorithms made for the 

surgical instruments detection and tracking from the 

perspective of computer vision in the OR. In the 

subsequent sections, traditional and modern 

approaches, the handcrafted feature-based models, 

the deep learn frameworks, using the hybrid 

techniques, and using the video analysis and the 

temporal and spatial information will be discussed. 

Availability of dataset, evaluation of model, and real-

world deployment challenges will be probed. This 

review provides a consolidation of recent advances in 

the fields of instrument tracking and identification of 

existing gaps in the literature, in an effort to transform 

current knowledge into suggestions for future 

research and subsequent development of feasible, 

efficient, and robust instrument tracking systems for 

clinical viability, shown in Table 1. 

2. Literature Survey 

 

Table 1 Summary of Key Research Studies in Surgical Instrument Detection and Tracking 

Year Focus Findings (Key Results and Conclusions) Reference 

2018 

Instrument segmentation 

using encoder-decoder 

architecture 

Introduced a deep encoder-decoder network that 

achieved high segmentation accuracy and efficiency in 

robotic surgery videos. 

[11] 

2019 
Temporal modeling for 

instrument detection 

Demonstrated that incorporating temporal context 

improves detection robustness, especially under 

occlusion or poor lighting conditions. 

[12] 

2020 
Real-time laparoscopic 

tool segmentation 

Proposed a real-time CNN-based model optimized for 

latency; achieved 33 fps and state-of-the-art 

segmentation accuracy. 

[13] 

2017 
Multi-label detection of 

tools in cataract surgery 

Developed a multi-label CNN for simultaneous detection 

of multiple tools in cataract surgery videos with high 

average precision. 

[14] 

2021 

Weakly supervised 

learning for surgical tool 

tracking 

Achieved competitive performance using only video-

level labels, reducing reliance on pixel-wise annotation 

while maintaining acceptable tracking performance. 

[15] 

2022 
Transformer-based 

instrument tracking 

Introduced a transformer-based model for temporal 

modeling and achieved improved performance over 

CNN-only methods in complex procedures. 

[16] 

2018 

Tool presence detection 

using CNN-LSTM 

hybrids 

Combined CNNs with LSTM layers to model sequential 

tool usage patterns; outperformed static CNNs in 

temporal consistency. 

[17] 
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2020 
Instance segmentation for 

instrument classification 

Used Mask R-CNN for real-time instance segmentation 

and classification, distinguishing between visually 

similar instruments effectively. 

[18] 

2022 

Semi-supervised 

segmentation using 

consistency training 

Leveraged unlabeled data to improve segmentation 

model generalizability, with accuracy improvements 

over baseline supervised models. 

[19] 

2023 

Domain adaptation for 

surgical instrument 

segmentation 

Addressed cross-domain variability using adversarial 

training, enabling improved generalization to unseen 

surgical environments. 

[20] 

3. Proposed Theoretical Model for Surgical 

Instrument Detection and Tracking 

Most modern computing systems that are developed 

to detect and track surgical instruments in the 

operating room generally consist of a pipeline with 

different computer vision modules, including 

modules for image acquisition, preprocessing, feature 

extraction, object detection, and tracking, and finally, 

the output generation. Modular design is followed in 

the current research and practical deployments alike, 

and the following Figure 1 block diagram and model 

architecture encapsulate the same. 

 

Figure 1 Computer Vision Pipeline for Surgical 

Instrument Detection and Tracking 

 

3.1. Component-Level Explanation with 

References 

3.1.1. Image Acquisition and Preprocessing 

Intraoperative video or image sequences are first 

acquired through the laparoscopic or robotic surgical 

systems. They include noise, motion blur, and the 

existence of multiple lighting conditions. The data is 

usually taken through preprocessing techniques such 

as histogram equalization, Gaussian filtering, and 

image normalization [21] for downstream 

processing. 

3.1.2. Feature Extraction 

In modern systems, feature extraction is carried out 

by CNNs such as ResNet, VGG, or EfficientNet. 

These networks map the input frames onto high-

dimensional feature representations that contain 

spatial, textural, and edge-level information [22]. 

Recently, transformer-based architectures have been 

used to incorporate or replace CNNs in vision 

applications to gain improved spatial understanding, 

in particular, to capture the global dependencies in 

surgical scenes [23]. 

3.1.3. Instrument Detection 

The central task in instrument identification is to 

locate objects. To localize instruments, bounding box 

models called YOLO (You Only Look Once), SSD 

(Single Shot MultiBox Detector), and Faster R-CNN 

are used [24]. They are usually trained on annotated 

surgical video datasets to separate surgical tools from 

other tissues, incurring different levels of speed and 

accuracy trade-off. 

3.1.4. Instrument Tracking 

Tracking algorithms are deployed in order to 

maintain the identity of instruments over time. 
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Classical techniques (Kalman filters, optical flow, 

etc.), and also modern methods (Deep SORT [25], 

etc.) are included. In the context of tracking objects 

and actors’ tools, continuity and temporal coherence 

are improved, particularly when the tools exit and re-

enter the frame, or when the tools occlude the target. 

3.1.5. Post-processing and Output Visualization 

After processing, detection outputs are refined 

through post-processing modules, i.e., false positives 

are removed, missing tracks are interpolated, and 

detections are fused across frames. Additional 

modules used to supplement their real-time assistance 

over the surgical video feed track the tool usage 

statistics for surgical documentation and skill 

assessment [26]. 

3.2. Discussion of Proposed Enhancements to the 

Model 

To address limitations in generalizability and 

robustness, the proposed model emphasizes: 

 Multi-scale feature fusion to accommodate 

tools of various sizes and orientations [27]. 

 Attention mechanisms to dynamically weigh 

relevant spatial features in cluttered or 

occluded frames [28]. 

 Domain adaptation modules to handle data 

from different surgical procedures, 

institutions, or imaging modalities [29]. 

 Uncertainty estimation using Bayesian deep 

learning to assess model confidence, which is 

vital for clinical reliability [30]. 

These enhancements aim to optimize performance 

under real-world constraints and support future 

integration into robotic systems and intelligent 

operating rooms. 

4. Experimental Results and Performance 

Evaluation 

Determination of the quality of the surgical 

instrument detection and tracking systems is mainly 

done by means of a few key performance indicators, 

such as detection accuracy, tracking stability, 

inference speed, and robustness under various 

intraoperative conditions. In the field, the most used 

datasets are the MICCAI EndoVis Challenge datasets 

(2015-2018), Cholec80, and the m2cai16-tool dataset 

that contains real-world laparoscopic and robotic 

videos with annotations of tool presence and 

bounding boxes [31]. 

4.1. Detection Accuracy (mAP) 

One of the primary benchmarks is mean Average 

Precision (mAP) at different Intersection over Union 

(IoU) thresholds. For surgical tools, IoU thresholds 

of 0.5 and 0.75 are commonly applied. The table 

below compares performance across several notable 

models, shown in table 2. 

 

Table 2 Detection Performance on EndoVis 2017 

Dataset 

Model 
Backb

one 

mAP

@0.5 

(%) 

mAP

@0.75 

(%) 

F

P

S 

Refer

ence 

Faster 

R-CNN 

ResNet

-50 
82.4 71.2 8 [32] 

YOLO

v5s 

CSPDa

rknet 
79.3 67.1 40 [33] 

Retina

Net 

ResNet

-101 
80.5 69.7 12 [34] 

DETR 
Transfo

rmer 
76.1 65.4 10 [35] 

Efficie

ntDet-

D2 

Efficie

ntNet-

D2 

83.0 72.9 20 [36] 

 

4.2. Tracking Accuracy and Stability 

Multiple Object Tracking Accuracy (MOTA) and ID 

Switches (IDSW) are the main metrics for tracking 

evaluation. MOTA includes false positives, false 

negatives, and identity switches over two frames. 

Occlusion, tool similarity, and camera movement 

have a great impact on the performance on surgical 

tracking [37], shown in Table 3. This graph illustrates 

the trade-off between detection accuracy and speed. 

While YOLOv5s offers high speed, EfficientDet-D2 

balances both accuracy and inference performance, 

Figure 2. 

4.3. Robustness under Real-World Conditions 

The instrument detection models were also tested in 

challenging conditions, such as: 

 Motion blur, brightness variation, and other 

augmentations trained the models better (e.g., 

EfficientDet, YOLOv5) [42]. 

In cases of tool similarity (e.g., a dissector versus 

another dissector), the Transformer-based 
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approaches, such as DETR, were better at contextual 

reasoning [35]. 

 Mask R-CNN and RetinaNet were also better 

in multi-instrument scenes [43]. 

 

 
Figure 2 Detection Accuracy (mAP@0.5) vs FPS 

for Various Models 
 

Table 3 Tracking Performance on m2cai16-tool 

Dataset 

Tracker 

Detecti

on 

Input 

MO

TA 

(%) 

IDS

W 

FP

S 

Refere

nce 

Deep 

SORT 

YOLO

v5 
71.2 18 28 [38] 

Kalman 

+ 

Hungaria

n 

Faster 

R-

CNN 

65.9 25 10 [39] 

ByteTrac

k 

YOLO

v5 
75.4 14 32 [40] 

CenterTr

ack 

Center

Net 
69.5 20 25 [41] 

 

4.4. Summary of Key Findings 

 EfficientDet-D2 achieved the best balance 

between accuracy and speed, outperforming 

traditional CNNs in real-time scenarios. 

 Transformer-based models, such as DETR, 

lag in speed but show potential in tool 

disambiguation and contextual scene 

understanding. 

 ByteTrack yielded the highest tracking 

accuracy (MOTA 75.4%) when coupled with 

fast detectors like YOLOv5. 

 Augmentation strategies play a critical role in 

model generalization to diverse intraoperative 

environments. 

5. Future Directions 
Several research directions remain crucial to improve 

the effectiveness and to make the surgical instrument 

detection and tracking system more clinically viable. 

Poor model generalization across different hospitals, 

procedures, and equipment setups is considered one 

of the largest hurdles toward deployment in various 

clinical environments. To overcome the performance 

degradation across domains, domain adaptation 

strategies like adversarial learning, few-shot learning, 

and met a learning are being explored more and more 

[44]. The accuracy of the detection has improved, but 

the speed of real-time detection is bounded by the 

model complexity and latency of the inference. In 

order to design lightweight models, which could be 

deployed on edge computing in surgical robots and 

endoscopy systems, future work needs to use 

optimization techniques like neural architecture 

search (NAS), quantization [45], and pruning. 

Including non-visual cues like tool kinematics, force 

feedback, or audio signals can help increase 

robustness in such difficult situations where the 

object might be partially or fully occluded or in low 

contrast. As reported in the literature, more and more 

researches focus on the integration of heterogeneous 

data using a fusion strategy [46]. However, deep 

learning models usually behave as a black box, a 

problem of interpretability as well as an 

accountability issue in clinical settings. For 

regulation approval and user trust [47], explainable 

AI (XAI) tools like Grad-CAM, saliency maps, and 

uncertainty estimation need to be integrated. 

However, a lack of ready surgical videos and 

annotation costs leads to synthetic datasets and 

simulation-based environments as important learning 

aids for model training. Further work can also be 

applied to scale models with the aid of photorealistic 

rendering and domain randomized simulations [48]. 
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Due to the increased need in the surgical process, 

systems are required that can simultaneously detect 

instruments, recognize surgical phases, and evaluate 

procedural efficiency. Integrated platforms of this 

kind could offer a higher level of understanding and 

aid intelligent automation in the OR [49]. 

Conclusion 

As a leading development of intelligent operating 

rooms, surgical instrument detection and tracking 

systems based on computer vision are proposed. In 

particular, substantial advances in model 

architectures, specifically convolutional and 

transformer-based detectors, have led to improved 

accuracy and tracking stability over complex surgical 

scenes. Nevertheless, a significant number of 

important challenges remain: generalization across 

surgery domains, safe time constraints to run in near 

real-time, and safety-critical interpretability. Domain 

adaptive algorithms, multimodal sensor integration, 

and making the AI models transparent are pointed out 

as future directions. Consequently, these 

technologies will need to be further translated to safe 

and effective surgical tools in the future through 

continued collaboration of machine learning 

researchers, clinicians, and robotic system 

developers. To become applicable on a large scale, 

these systems have to tackle the current weaknesses 

of robust design, large-scale annotated data, and real-

world testing, to be deployed in clinical readiness for 

large-scale use. 
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