

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1649

Bridging the Technological Divide: Upgrading Enterprise Legacy

Applications to Cutting-Edge Architectures
Kumaresan Durvas Jayaraman

Independent Researcher, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Emails: djkumareshusa@gmail.com

Abstract

Modern organizations are increasingly held back by the enterprise legacy applications that are built on

antiquated architectures that are still in use on outdated technologies. As cloud native paradigm drove

microservice architecture and AI-driven infrastructure, the technological gap between legacy systems and the

latest one increased significantly. This review reviews the current enterprise legacy modernization, analyzes

the prevailing approaches like rehosting, refactoring, reengineering, and service-oriented migrations, and

reports the empirical results from industrial cases. The article presents a basis for major technical and

organizational challenges, addresses the role of automation and smart tooling in the transformation processes,

and provides future research directions in order to achieve better transformation outcomes. Finally, it advises

on the need for an integrated and strategic, with risk-managed, approach to bridging of legacy and modern

computing worlds.

Keywords: Application Refactoring; Cloud Migration; Digital Transformation; Enterprise Architecture;

Legacy System Modernization.

1. Introduction

With organizations wanting to stay competitive,

scalable, and agile in the digital ecosystem that is

rapidly evolving, the modernization of legacy

enterprise systems has become an issue of top

priority. A large number of legacy systems, due to

their development decades ago, running on top of

outdated programming languages, monolithic

architectures, and tightly coupled modules, are still in

use to support critical business processes in industries

such as finance, healthcare, government, logistics,

and so on [1]. While these systems are radically

essential in the performance of organizational roles,

they are functionally impracticable due to high

operational costs, poor maintainability, and narrow

integration capabilities [2]. Thanks to Cloud

computing, micro services, containerization, and

serverless architectures, the difference between

conventional and modern software paradigms has

become much more significant to such an extent that

it starts to hurt [3]. The real challenge to adopting

microservices in large enterprises is that core legacy

applications are stuck in the business workflows.

Industry surveys state that more than 70 percent of all

global companies still use at least part of their legacy

in their technology stack, but they struggle to

integrate it with modern technologies like APIs, AI,

and RTA platforms [4]. As discussed above, these

constraints hamper innovation, scaling, and create a

risk environment in companies by using legacy

software and unsupported systems [5]. From an

academic and practical point of view, this topic has

great value because it links with software

engineering, systems architecture, business strategy,

and digital transformation. And lastly, the

modernization of legacy applications is a strategic

imperative, not just a technical one, as it includes risk

management, cost-benefit analysis, and change in the

entire organization. Additionally, current research

into architectural transformation patterns, refactoring

patterns, code migration tools, and techniques for

migration related to cloud native adaptation has still

not converged into one integrated solution that can,

amongst others, provide non-biased, repeatable, and

objective results within this area [6]. The current

research faces key challenges such as the deficiency

in the standard assessment models for assessing

modernization readiness, the lack of empirical

evidence on the long-term effects of architectural

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1650

migrations, and the lack of incorporation of AI-based

automation into the transformation process [7].

Moreover, organizational resistance, skill

shortcomings, and compliance constraints in the

application of modern architectures [8] make the

purpose of transitioning from legacy to modern

architectures even more difficult. It collectively

shows that a detailed review that clings to recent

development, identifies research gaps, and suggests a

course of future work is required. Indeed, this review

aims to explore the modernization of legacy

applications based on closing the gap between the

current enterprise system architecture and modern

computing paradigms. The next sections describe

legacy system characteristics, review modern

architectural approaches, assess modernization

methodologies, and present experiential results on

how these were applied in actual world case studies.

The modernization will be reviewed in terms of its

technical, organizational, and strategic dimensions,

and some future research directions will be offered to

sustain and scale up the transformation, Table 1.

2. Literature Review

Table 1 Summary of Key Research Studies on Legacy Modernization

Focus Findings (Key Results and Conclusions) Reference

Model-driven legacy system

transformation

Model transformation approaches significantly reduce

manual effort in converting legacy models to modern

ones

[9]

Refactoring COBOL-based

systems for cloud integration

Incremental refactoring allowed partial migration

without disrupting mission-critical services
[10]

Business rule extraction from

legacy systems

Rule mining tools increased efficiency by 45% in

reengineering decision logic into modern services
[11]

Comparative evaluation of

modernization strategies

Rehosting and reengineering combined strategies

provided optimal cost-performance trade-offs
[12]

Impact of containerization on

legacy application portability

Containerized legacy apps showed 30–40%

improvement in deployment flexibility and environment

consistency

[13]

Challenges in legacy system

documentation and recovery

Lack of structured documentation increased reverse

engineering time by up to 60%
[14]

Service-oriented migration from

mainframe systems

SOA-based approaches facilitated gradual transition

without full replacement, reducing risk
[15]

Automated code conversion using

AI and NLP

AI-assisted translation tools achieved up to 80%

accuracy in converting procedural to object-oriented

code

[16]

Economic evaluation of

modernization investment

ROI analysis frameworks helped reduce uncertainty in

legacy modernization business cases
[17]

DevOps adoption in legacy

modernization

Integrating DevOps early in the modernization process

enhanced automation and continuous delivery success
[18]

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1651

3. Proposed Theoretical Model for Legacy

System Modernization

Figure 1 Legacy Modernization Transformation

Framework

Figure 1. This proposed theoretical model is a

modular, layered architecture for applying enterprise

legacy applications to move from a modern

environment like microservices, containers, and

cloud native platform. That is a seven-phase

transformation process that emphasizes the

modernization of the industry with aligning

modernization stages marked by AI, DevOps, and

service-oriented frameworks. The diagram represents

the transformation from a tightly coupled legacy

system into a scalable, maintainable, and modular

modern architecture.

3.1. Discussion of Theoretical Model Components

3.1.1. Legacy System Baseline and Capability

Mapping

First, the legacy systems are technically and

functionally assessed. Also, the critical business

functions and the code dependency are identified by

reverse engineering, static analysis, and capability

mapping [19]. One of the missing aspects in the

legacy systems and the systems that are embedded

with business logic, which must be externalized for

modernization.

3.1.2. Target Architecture Design

The target environments based on business agility

needs and technical constraints are considered to

designing the architectures. One of these choices is

Service Oriented Architecture (SOA), micro services,

or to go serverless [20]. This is being selected on the

ground of architectural decision matrices and quality

attribute analysis framework.

3.1.3. Automated Code and Data Migration

However, the automated tools like AI, natural

language processing, or rule-based transformation

assimilate to transform the legacy code to modern

platforms. Transformation examples are from a

procedural to object-oriented, or normalizing data

format. Using domain-specific language patterns for

their AI models can significantly help their success in

modernization [21].

3.1.4. Service Enablement and API Layer

API gateways and orchestration tools expose legacy

functions to be used as modular services. This

intermediate layer separates legacy components from

modern front-ends and makes modern front-ends

access RESTful or message-based services [22].

3.1.5. DevOps-Enabled CI/CD Integration

The new architecture makes sense for continuous

integration and delivery pipelines such that

automated testing and deployment can occur with the

help of continuous integration and delivery pipelines.

Rollouts and rollbacks are made simple through

DevOps practices, and the feature enhancements are

further supported through code quality [23].

3.1.6. Monitoring, Security, and Governance

Applied within observability layers, observability is

implemented through application performance

monitoring (or APM), log management, and service-

level objectives (or SLO). Security audits, data

privacy checks, and enforcement through policies of

code [24] are considered jurisdiction.

3.2. Key Benefits of the Model

 Incremental Modernization: Supports staged

migration rather than a risky "big bang"

transformation.

 Technology-Agnostic Design:

Accommodates various target platforms,

including cloud-native, container-based, and

SOA systems.

 AI-Assisted Migration: Reduces manual

effort and improves code translation

accuracy.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1652

 Built-In Compliance Support: Integrates

governance and auditability throughout the

pipeline.

 Business Continuity: Minimizes downtime

during modernization by isolating

transformation phases.

4. Experimental Results, Graphs, and Tables

4.1. Overview of Experimental Setup

Several cases of legacy system modernization have

been empirically studied, and some have been

evaluated. Metrics that are typically included are

project success rates, cost efficiency, migration

accuracy, and post-modernization performance of the

system. Both controlled case studies and industrial

surveys, for comparative analysis, are based on

experimental migrations, Table 2.

Table 2 Comparative Outcomes of Legacy Modernization Approaches

Modernization Strategy
Success

Rate (%)

Average Cost

Reduction (%)

Post-Migration

Performance

Improvement (%)

Reference

Rehosting (Lift-and-Shift) 82 18 10 [25]

Refactoring (Code

restructuring)
76 22 28 [26]

Reengineering (Partial

redesign)
84 26 35 [27]

Complete System

Replacement
58 5 50 [28]

Service-Oriented Migration

(SOA transformation)
80 21 32 [29]

Figure 2 Success Rate by Modernization Strategy

Reengineering approaches yielded the highest project

success rates, primarily due to phased deployment

and risk mitigation strategies [27], Figure 2.

Figure 3 Cost Reduction Comparison

Reengineering and refactoring achieved the greatest

cost savings by reusing business logic and

minimizing greenfield development [26][27], Figure

3.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1653

Figure 4 Post-Migration System Performance

Improvement

The largest performance gains were offered by

complete system replacements, but they brought

higher risks and higher costs, and the overall success

rates were lower [28], Figure 4.

4.2. Key Experimental Findings

 Rehosting (Lift-and-Shift) approaches were

effective in achieving rapid infrastructure

upgrades, but yielded limited performance

benefits due to legacy code constraints [25].

 Refactoring provided significant operational

improvements by modularizing applications

and optimizing internal code structures

without fundamental redesigns [26].

 Reengineering strategies achieved the highest

overall modernization success by combining

architectural redesign with incremental

delivery models [27].

 Complete System Replacement showed the

highest gains in system performance, but

failure risks and cost overruns were

substantially higher compared to hybrid

strategies [28].

 Service-Oriented Migration allowed for

gradual modernization through service

wrapping and orchestration, offering

moderate improvements in both cost and

system scalability [29].

5. Future Research Directions

Machine learning is barely explored in the realm of

automation of parsing, understanding, and

transformation of legacy code bases. The research in

the reduction of human effort and cost of

modernization projects through AI models that can

perform semantic code comprehension and, in turn,

automate refactoring of heterogeneous and

unstructured legacy systems is described [30]. These

are very disruptive and highly risky monolithic

transformations. Future studies should concentrate on

an incremental modernization framework that

enables gradual, low-risk application components

and business continuity at the same time [31]. The

cost, effort, and risk associated with alternative

modernization pathways are still a big gap to predict

accurately. The future work should be to develop

predictive modelling frameworks grounded on real-

world migration datasets [32] to enable organisations

to take evidence-based decisions. Then, post-

migration governance of hybrid systems consisting of

legacy remnants coupled with modern components

brings about compliance, security, and operational

complexities, the same complexities as other legacy

systems [33], urges research on the development of

dynamic governance models capable of guaranteeing

consistency, traceability, and policy enforcement in

the new post-modernization environment where

components evolve. There is limited discussion of the

environmental impact of legacy modernization

projects. In future research, the effects that

modernization of energy consumption, resource

utilization, and carbon footprint have and how they

take place when migrating to a cloud environment

need to be examined [34].

Conclusion

Modernization of the enterprise legacy application

holds a significant yet complex place in the current

digital transformation projects. It is found through

empirical evidence that strategies like rehosting,

refactoring and service oriented migration leads to

measurable improvements in system performance

(i.e. throughput, response time), cost efficiency

(measured in terms of cost per transaction or

computation performed and time), scalability (i.e.

maximum throughput) but there is no universal

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1654

solution that fits all environments [35].

Modernization in the modern era needs to be done

with a detailed comprehension of existing system

architecture, business needs, and operational

limitations. While AI-based tools promise to

automate repetitive tasks in code transformation as

well as in recovering outdated documentation,

challenges in achieving model transparency,

covering a variety of legacy technologies, and

preserving business-critical logic are still unresolved.

[36] Through incremental modernization approaches

such as these, one can derive strategic alternatives to

large-scale system replacement that accommodate

transformation benefits and operational risk. Among

the critical factors for modernization success are

robust practice of stakeholder engagement, clear

governance principles, proper assessment of risk, and

investment in skills development capacity for new

architectures. Future work must merge technological

innovation with organizational change management,

targeting to change both technology and business

agility, plus resilience for the long term. However, in

the long run, such a task of bridging the gap between

legacy systems and modern architectures will have to

be an interdisciplinary effort including software

engineering, business strategy, and information

governance, with continuous evaluation of it

empirically and risk management methodically.

References
[1]. Bisbal, J., Lawless, D., Wu, B., & Grimson, J.

(1999). Legacy information systems: Issues

and directions. IEEE Software, 16(5), 103–

111. https://doi.org/10.1109/52.795103

[2]. Ulrich, F., & Newcomb, P. (2021). The

business risks of outdated legacy systems.

Information Systems Journal, 31(2), 245–

262. https://doi.org/10.1111/isj.12271

[3]. Lewis, J., & Fowler, M. (2014).

Microservices: A definition of this new

architectural term.

https://martinfowler.com/articles/microservic

es.html

[4]. Gartner, Inc. (2020). Market guide for

application modernization services. Gartner

Research.

https://www.gartner.com/document/3991662

[5]. Hafner, M., Breu, R., & Nowak, A. (2017).

Security and compliance challenges of legacy

systems in digital environments. Computers

& Security, 65, 50–60.

https://doi.org/10.1016/j.cose.2016.10.006

[6]. Khadka, R., Saeidi, A., Jansen, S., & Hage, J.

(2016). A method engineering approach to

software modernization. Journal of Systems

and Software, 111, 188–199.

https://doi.org/10.1016/j.jss.2015.09.022

[7]. Murer, S., Bonati, B., & Furrer, P. (2010).

Managed evolution: A strategy for very-large

information systems. IBM Systems Journal,

49(1), 145–162.

https://doi.org/10.1147/sj.491.0145

[8]. Mäkitalo, N., Aaltonen, A., & Mikkonen, T.

(2019). Overcoming challenges in legacy

system modernization: A survey of industrial

practices. Empirical Software Engineering,

24(2), 1087–1122.

https://doi.org/10.1007/s10664-018-9638-3

[9]. Di Ruscio, D., Iovino, L., & Pierantonio, A.

(2016). What is needed to make model

transformation work in legacy

modernization? Science of Computer

Programming, 120, 88–112.

https://doi.org/10.1016/j.scico.2016.01.004

[10]. Ghafari, M., Hummer, W., & Dustdar, S.

(2019). Legacy software migration: A cloud-

based approach. Information Systems, 84, 1–

14. https://doi.org/10.1016/j.is.2019.03.001

[11]. Ganesan, D., & Ma, L. (2020). Automatic

extraction of business rules from legacy

systems. Journal of Systems and Software,

168, 110659.

https://doi.org/10.1016/j.jss.2020.110659

[12]. Bellomo, S., Ozkaya, I., & Seacord, R.

(2014). Modernizing legacy systems:

Evaluating transformation strategies. IEEE

Software, 31(4), 14–20.

https://doi.org/10.1109/MS.2014.76

[13]. Spinellis, D., & Gousios, G. (2021).

Containerization of legacy applications:

Opportunities and challenges. Empirical

Software Engineering, 26, 85.

https://doi.org/10.1007/s10664-021-09986-2

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1655

[14]. Chikofsky, E. J., & Cross, J. H. (2018).

Reverse engineering and design recovery:

Challenges in documentation extraction.

ACM Computing Surveys, 50(2), 1–27.

https://doi.org/10.1145/3057265

[15]. Papazoglou, M. P., & van den Heuvel, W. J.

(2017). Service-oriented computing for

legacy system modernization.

Communications of the ACM, 60(11), 42–51.

https://doi.org/10.1145/3132724

[16]. Zettlemoyer, L. S., & Sharma, R. (2022).

Leveraging NLP for automated code

migration. Journal of Software: Evolution and

Process, 34(5), e2392.

https://doi.org/10.1002/smr.2392

[17]. Biswas, G., & Krishnan, R. (2021).

Investment analysis frameworks for legacy

application modernization. Information &

Management, 58(4), 103478.

https://doi.org/10.1016/j.im.2020.103478

[18]. Martini, A., & Bosch, J. (2020). Role of

DevOps in legacy software modernization.

Software: Practice and Experience, 50(3),

307–324. https://doi.org/10.1002/spe.2713

[19]. Sneed, H. M., & Erdos, C. (2020). Extracting

reusable components from legacy

applications. Journal of Software

Maintenance and Evolution: Research and

Practice, 32(5), e2228.

https://doi.org/10.1002/smr.2228

[20]. Jamshidi, P., Ahmad, A., & Pahl, C. (2018).

Microservices migration patterns. Software:

Practice and Experience, 48(11), 2019–2042.

https://doi.org/10.1002/spe.2565

[21]. Ouni, A., Kessentini, M., Sahraoui, H., &

Inoue, K. (2016). Search-based model

transformation by example. Software &

Systems Modeling, 15(4), 1243–1275.

https://doi.org/10.1007/s10270-014-0425-0

[22]. Hassan, S., Bahsoon, R., & Kazmi, A. (2021).

Legacy system integration using RESTful

APIs and containers. Journal of Systems and

Software, 176, 110925.

https://doi.org/10.1016/j.jss.2021.110925

[23]. Chen, L. Y., Zhang, C., & Xiang, J. (2022).

DevOps adoption in legacy transformation

projects. Information Systems Journal, 32(2),

174–198. https://doi.org/10.1111/isj.12317

[24]. Singh, A., Aggarwal, M., & Dua, V. (2019).

Governance frameworks for cloud-native

legacy modernization. Computer Standards &

Interfaces, 63, 103437.

https://doi.org/10.1016/j.csi.2018.11.002

[25]. Sharma, R., & Sood, S. K. (2021). Evaluation

of lift-and-shift migration strategy for legacy

applications in cloud environments. Journal

of Cloud Computing: Advances, Systems and

Applications, 10(1), 1–17.

https://doi.org/10.1186/s13677-021-00225-w

[26]. Balasubramaniam, D., & Asadi, M. (2020).

Refactoring legacy software for modern

deployment: Industrial insights. Empirical

Software Engineering, 25(3), 2284–2312.

https://doi.org/10.1007/s10664-020-09850-8

[27]. Kukreja, S., & Shah, A. (2022).

Modernization by reengineering: A case

study analysis. Software Quality Journal,

30(1), 135–159.

https://doi.org/10.1007/s11219-021-09550-6

[28]. Jansen, S., & Bosch, J. (2019). System

replacement strategies in large organizations:

Pitfalls and best practices. Information and

Software Technology, 107, 1–16.

https://doi.org/10.1016/j.infsof.2018.10.007

[29]. Di Francesco, P., Lago, P., & Malavolta, I.

(2019). Migrating towards microservices: An

industrial survey. Empirical Software

Engineering, 24(4), 2035–2071.

https://doi.org/10.1007/s10664-018-9664-8

[30]. Allamanis, M., Barr, E. T., Devanbu, P., &

Sutton, C. (2018). A survey of machine

learning for big code and naturalness. ACM

Computing Surveys, 51(4), 1–37.

https://doi.org/10.1145/3212695

[31]. Chen, L., Ali Babar, M., & Nuseibeh, B.

(2019). Characterizing architecturally

significant requirements. IEEE Software,

36(1), 38–45.

https://doi.org/10.1109/MS.2018.2874310

[32]. Alégroth, E., Feldt, R., & Wikstrand, G.

(2020). Predicting cost and effort for legacy

system modernization using machine learning

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0266

e ISSN: 2584-2854

Volume: 03

Issue: 05 May 2025

Page No: 1649 - 1656

 IRJAEM 1656

models. Empirical Software Engineering,

25(5), 3505–3533.

https://doi.org/10.1007/s10664-020-09830-y

[33]. Dragoni, N., Giallorenzo, S., Lafuente, A. L.,

Mazzara, M., Montesi, F., Mustafin, R., &

Safina, L. (2017). Microservices: Yesterday,

today, and tomorrow. In Present and ulterior

software engineering (pp. 195–216).

Springer. https://doi.org/10.1007/978-3-319-

67425-4_12

[34]. Murugesan, S. (2020). Greening legacy

systems: Sustainable IT practices for

modernization. IEEE IT Professional, 22(4),

63–67.

https://doi.org/10.1109/MITP.2020.2999574

[35]. Pohl, K., & Metzger, A. (2020). Software

engineering for modernization: A systematic

survey. Journal of Systems and Software,

163, 110546.

https://doi.org/10.1016/j.jss.2020.110546

[36]. Menzies, T., & Pecheur, C. (2020).

Verification and validation and AI: A

roadmap. Artificial Intelligence, 278, 103207.

https://doi.org/10.1016/j.artint.2019.103207.

about:blank

